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Abstract— A kind of complex dynamical networks with time-
varying coupling delays is proposed. By some transforma-
tion, the synchronization problem of the complex networks is
transferred equally into the stochastic asymptotical stability
problem of a group of uncorrelated delay functional differential
equations. Different from the common assumptions on the delay
in the existing references, the delay in this paper is assumed to
be random and its probability distribution is known a prior. In
terms of the probability distribution of the delays, a new type of
system model with probability-distribution-dependent param-
eter matrices is proposed, the sufficient condition for delay-
dependent asymptotical synchronization stability is derived in
the form of linear matrix inequalities, the solvability of derived
conditions depends on not only the size of the delay, but also
the probability of the delay taking values in some intervals. At
last, a numerical example is given to illustrate the feasibility
and effectiveness of the proposed method.

I. INTRODUCTION

Complex network models are often used to describe
various interconnected systems of real world, such as the
world wide web, food webs, electronic power grids, internet
etc [1]–[4]. Since the complexity of real world network,
there are various complex network models used to study
the dynamics of coupled systems. Synchronization is a basic
motion in coupled dynamical networks which has been
carefully studied in [5]–[9].

The characteristic of time-delayed coupling is very com-
mon in biological and physical systems etc [10]–[12], some
of time delays are trivial so can be ignorant, while some
others cannot be ignored, such as in long distance communi-
cation, traffic congestions etc. Therefore, time delays should
be modeled in order to simulate more realistic networks.
Wang and Chen [13] analyzed the synchronization based
on a simple uniform dynamical network model with the
same coupling strength for all connections. Li and Chen
[14] extended the model to the one with coupling delays,
and derived several synchronization criteria in the form of
linear matrix inequality. Gao, lam and chen [5] showed
some improved rules to judge the asymptotic stability of
complex networks with invariant delays, which are less
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conservative when compared with Li and Chen’s results in
[14]. But it is worth noting that most of the existing results on
complex networks are concerned with constant delays, little
progress has been made towards solving the problem arising
from complex networks with time-varying coupling delays.
Moreover, in many practical systems, such as networked
control systems, the probability distribution of time delay
in the interval is an important characteristic for the network
conditions [15], [16], the probability of the delay appearing
in lower interval is large and long delay happens with a
low probability, it may be outside the allowable variation
range given in the traditional methods [17]. Therefore, the
information of probability distribution of the delay should be
employed in the model. Synchronization stability analysis,
as one of the fundamental problems for complex networked,
still remains unsolved and challenging, which motivates the
present study.

In this paper, basing on the above analysis, a class
of complex dynamical networks with time-varying
coupling delays is proposed. By some transformation,
the synchronization problem of the complex networks
is transferred equally into the stochastic asymptotical
stability problem of a group of uncorrelated delay functional
differential equations. It is assumed that the probability of
the delays appearing in some intervals can be observed and
modeled as a function of the stochastic variable satisfying
Bernoulli random binary distribution. In terms of the
probability distribution of the delay, a new type of system
model with stochastic parameter matrices is proposed,
the sufficient condition for delay-dependent asymptotical
synchronization stability is derived in the form of linear
matrix inequalities. A numerical example is given to
illustrate the theoretical results.

II. COMPLEX DYNAMICAL NETWORKS MODEL AND
PRELIMINARIES

Consider delayed complex dynamical networks consist-
ing of N identical nodes, in which each node is an m-
dimensional dynamical subsystem

ẋi(t) = f(xi(t)) + c
N∑

j=1

gijΓxj(t− τ(t))

(i = 1, 2, · · · , N) (1)

where xi(t) = (xi1(t), xi2(t), · · ·xim(t))T ∈ Rm is the
state vector of the ith node. f(·) ∈ Rm is a continuously
differentiable vector function. The constant c > 0 represents
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the coupling strength. Γ = (γij) ∈ Rm×m is a inner-
coupling matrix, if some pairs (i, j), 1 ≤ i, j ≤ m, with
γij �= 0, then it means two coupled nodes are linked through
their ith and jth state variables, G = (gij)N×N represents
the outer-coupling matrix of the networks, in which gij is
defined as follows: if there exist a connection between node
ith and node jth (j �= i), then gij = gji = 1, otherwise
gij = gji = 0, (j �= i), and the diagonal elements of matrix
G are defined by

gii = −
N∑

j=1,j �=i

gij = −
N∑

j=1,j �=i

gji (i = 1, 2, · · ·N) (2)

τ(t) is a bounded time-varying delay.
Assumption 1: There exist three constants τ1, τ2 and β0 ∈

[0, 1], where 0 ≤ τ1 ≤ τ2, such that

(1) 0 ≤ τ(t) ≤ τ2

(2) the probability of τ(t) taking values in [0, τ1)
is β0 and in [τ1, τ2] is 1− β0

Define two sets

Ω1 = {t : τ(t) ∈ [0, τ1)}
Ω2 = {t : τ(t) ∈ [τ1, τ2]}

Obviously Ω1 ∪ Ω2 = R+ and Ω1

⋂
Ω2 = φ (empty).

From the definitions of Ω1 and Ω2, it can be seen that t ∈ Ω1

means the event τ(t) ∈ [0, τ1) occurs and t ∈ Ω2 means the
event τ(t) ∈ [τ1, τ2] occurs. Based on the above two sets,
the following two functions are defined

τ1(t) =

{
τ(t) for t ∈ Ω1

0 for t ∈ Ω2

τ2(t) =

{
τ(t) for t ∈ Ω2

τ1 for t ∈ Ω1

Furthermore, we can define a stochastic variable β(t) as

β(t) =

{
1 for t ∈ Ω1

0 for t ∈ Ω2

Assumption 2: β(t) is a Bernoulli distributed sequence
with

P{β(t) = 1} = E{β(t)} = β0

P{β(t) = 0} = 1− E{β(t)} = 1− β0

Remark 1: The introduction of β(t) is motivated by [17],
where the Bernoulli distributed sequence β(t) is used to
model the missing message of the system. Different from
[17], β(t) is used in this paper to describe the probability of
the random delays appearing in different intervals.

Definition 1: The delayed dynamical networks (1) is said
to achieve asymptotic synchronization if

x1(t) = x2(t) = · · · = xN (t) = s(t) as t→∞ (3)

where s(t) is a solution of an isolate node and satisfies ṡ(t) =
f(s(t)).

To obtain the main results, the following lemmas are
needed.

Lemma 1: Consider the delayed dynamical networks (1),
the eigenvalues of outer coupling matrix G are denoted by

0 = λ1 > λ2 ≥ λ3 ≥ · · · ≥ λN

if the following N − 1 of m-dimensional time-varying
delayed differential equations are stochastic asymptotically
stable about their zero solution

Aξ(t) + (β(t)− β0)Bξ(t) = 0 (4)

where

A =
[

J(t) β0cλkΓ 0 (1− β0)cλkΓ 0 −I
]

B =
[
0 cλkΓ 0 −cλkΓ 0 0

]
ξT (t) = [ηT

k (t) ηT
k (t− τ1(t)) ηT

k (t− τ1)
ηT

k (t− τ2(t)) ηT
k (t− τ2) η̇T

k (t)]

J(t) is the Jacobian of f(x(t)) at s(t), then the synchronized
states (3) are asymptotically stable.

Proof: Define error vectors as

ei(t) = xi(t)− s(t) (i = 1, 2, · · ·N) (5)

According to the networks (1), the error system is de-
scribed by

ėi(t) = f(xi(t))− f(s(t)) + c
N∑

j=1

gijΓej(t− τ(t)) (6)

Since f(·) is continuous differentiable, linearizing the con-
trolled network (1) on the homogenous stationary state s(t)
leads to

ė(t) = e(t)JT (t) +Ge(t− τ(t))ΓT (7)

where e(t) = (e1(t), e2(t), · · · eN (t))T ∈ RNm, there exist
an orthogonal matrix φ = (φ1, φ2, · · ·φN ) ∈ RN×N , such
that

GT φk = λkφk (k = 1, 2, · · · , N) (8)

Using the nonsingular transform e(t) = φη(t), then (7)
can be expanded into the following equations

η̇(t) = η(t)JT (t) + cΛη(t− τ(t))ΓT (9)

where Λ = diag{λ1, λ2, · · · , λN}, furthermore, we can
obtain

η̇k(t) = J(t)ηk(t) + λkΓηk(t− τ(t)) (k = 1, 2, · · · , N) (10)

where ηT
k is the kth row of η(t). Note that λ1 = 0

corresponding to the synchronization of the system states
(3), where the state s(t) is an orbitally solution of the isolate
nodes. If the following N−1 pieces of m- dimensional linear
time-varying delayed differential equations

η̇k(t) = J(t)ηk(t) + λkΓηk(t− τ(t)) (k = 2, 3, · · · , N) (11)
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are asymptotically stable, then e(t) will tend to the origin
asymptotically, which implies that the synchronized states
(3) are asymptotically stable.

By using the new function τi(t) (i = 1, 2) and β(t), the
system (11) can be rewritten as

η̇k(t) = J(t)ηk(t) + β(t)cλkΓηk(t− τ1(t))
+(1− β(t))cλkΓηk(t− τ2(t)) (12)

which can be further expressed as

Aξ(t) + (β(t)− β0)Bξ(t) = 0 (13)

Hence the stability problem of N×m-dimensional system
(1) is converted into the stability problem of N−1 indepen-
dent of m-dimensional linear stochastic system (4).

Since (4) is a stochastic system, for the stability analysis
of (4), the following definition is needed.

Definition 2: For a given function V :
Cb

F0
([−τ2, 0], Rn) × S, its infinitesimal operator L[·],

is defined as

LV (xt) = limΔ→0+
1
Δ
[E(V (xt+Δ|xt))− V (xt)] (14)

Moreover, we also need the following lemmas.
Lemma 2: Q1i, Q2i (i = 1, 2) and Q are constant matri-

ces of appropriate dimensions, τi(t), (i = 1, 2) is function
of t and satisfies 0 ≤ τ1(t) ≤ τ0 ≤ τ2(t) ≤ τM , then

Q+ [τ1(t)Q11 + (τ0 − τ1(t))Q21]
+[(τ2(t)− τ0)Q12 + (τM − τ2(t))Q22] < 0 (15)

if and only if

τ0Q11 + (τM − τ0)Q12 +Q < 0 (16)
τ0Q11 + (τM − τ0)Q22 +Q < 0 (17)
τ0Q21 + (τM − τ0)Q12 +Q < 0 (18)
τ0Q21 + (τM − τ0)Q22 +Q < 0 (19)

III. SYNCHRONIZATION STABILITY CRITERIA IN
COMPLEX DYNAMICAL NETWORKS

Clearly, synchronization of dynamical networks (1) is
equivalent to the stochastic stability of dynamical networks
(4) about zero solution. A sufficient condition for delay-
dependent stochastic asymptotical stability of system (4) is
given as follows.

Theorem 1: For given scalars 0 ≤ τ1 ≤ τ2, the system (4)
is asymptotically stable, if there exist matrices P > 0, Qi >
0, (i = 1, 2), Ri > 0, (i = 1, 2, 3) and Ni,Mi, Vi, Ti(i =
1, 2, 3, 4, 5, 6) and Si, (i = 1, 2) of appropriate dimensions
such that the following matrix inequality holds⎡

⎣ Σ11 Σi
12 Σ13

(Σi
12)

T Σ22 0
(Σ13)T 0 Σ33

⎤
⎦ < 0, (i = 1, · · · , 4) (20)

where

Σ11 =

⎡
⎢⎢⎢⎢⎢⎢⎣

φ11 φ12 φ13 φ14 φ15 φ16

φT
12 φ22 φ23 φ24 φ25 φ26

φT
13 φT

23 φ33 φ34 φ35 φ36

φT
14 φT

24 φT
34 φ44 φ45 φ46

φT
15 φT

25 φT
35 φT

45 φ55 φ56

φT
16 φT

26 φT
36 φT

46 φT
56 φ66

⎤
⎥⎥⎥⎥⎥⎥⎦

Σ1
12 =

[ √
τ1N

√
τ2 − τ1V

]
Σ2

12 =
[ √

τ1N
√

τ2 − τ1T
]

Σ3
12 =

[ √
τ1M

√
τ2 − τ1V

]
Σ4

12 =
[ √

τ1M
√

τ2 − τ1T
]

Σ13 =

⎡
⎢⎢⎢⎢⎢⎢⎣

S1 0
0

√
β0(1− β0)cλkΓ

0 0
0

√
β0(1− β0)cλkΓ

0 0
S2 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Σ22 =
[−R1 0

0 −R2

]

Σ33 =
[−R3 0

0 −R3

]
φ11 = Q1 +Q2 +N1 +NT

1 + S1J(t) + JT (t)ST
1

φ12 = −N1 +M1 +NT
2 + β0cλkS1Γ

φ13 = −M1 + V1 +NT
3

φ14 = −V1 + T1 +NT
4 + (1− β0)cλkS1Γ

φ15 = −T1 +NT
5

φ16 = P − S1 +NT
6 + JT (t)ST

2

φ22 = M2 +MT
2 −N2 −NT

2

φ23 = −M2 + V2 −NT
3 +MT

3

φ24 = MT
4 −NT

4 − V2 + T2

φ25 = MT
5 −NT

5 − T2

φ26 = MT
6 −NT

6 + β0cλkΓT ST
2

φ33 = −Q1 −M3 −MT
3 + V3 + V T

3

φ34 = −MT
4 + T3 − V3 + V T

4

φ35 = −MT
5 − T3 + V T

5

φ36 = −MT
6 + V T

6

φ44 = −V4 − V T
4 + T4 + TT

4

φ45 = −T4 − V T
5 + TT

5

φ46 = −V T
6 + TT

6 + (1− β0)cλkΓT ST
2

φ55 = −Q2 − T5 − TT
5

φ56 = −TT
6

φ66 = −S2 − ST
2 + τ1R1 + (τ2 − τ1)R2

NT =
[

NT
1 NT

2 NT
3 NT

4 NT
5 NT

6

]
MT =

[
MT

1 MT
2 MT

3 MT
4 MT

5 MT
6

]
V T =

[
V T

1 V T
2 V T

3 V T
4 V T

5 V T
6

]
TT =

[
TT

1 TT
2 TT

3 TT
4 TT

5 TT
6

]
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Proof: Construct a Lyapunov-Krasovskii functional
candidate as

V (ηkt) = ηT
k (t)Pηk(t) +

∫ t

t−τ1

ηT
k (s)Q1ηk(s)ds

+
∫ t

t−τ2

ηT
k (s)Q2ηk(s)ds

+
∫ t

t−τ1

∫ t

s

η̇T
k (v)R1η̇k(v)dvds

+
∫ t−τ1

t−τ2

∫ t

s

η̇T
k (v)R2η̇k(v)dvds (21)

where P,Qi, Ri > 0, (i = 1, 2)
Using the infinitesimal operator (14) and the derivative

leads to the following equality

LV (ηkt) = 2η̇T
k (t)Pηk(t) + ηT

k (t)(Q1 +Q2)ηk(t)
−ηT

k (t− τ1)Q1ηk(t− τ1)
−ηT

k (t− τ2)Q2ηk(t− τ2)
+η̇T

k (t)(τ1R1 + (τ2 − τ1)R2)η̇k(t)

−
∫ t

t−τ1

η̇T
k (s)R2η̇k(s)ds

−
∫ t−τ1

t−τ2

η̇T
k (s)R2η̇k(s)ds (22)

Employing the free matrix method, we have

2ξT (t)N [ηk(t)− ηk(t− τ1(t))

−
∫ t

t−τ1(t)

η̇k(s)ds] = 0 (23)

2ξT (t)M [ηk(t− τ1(t))− ηk(t− τ1)

−
∫ t−τ1(t)

t−τ1

η̇k(s)ds] = 0 (24)

2ξT (t)V [ηk(t− τ1)− ηk(t− τ2(t))

−
∫ t−τ1

t−τ2(t)

η̇k(s)ds] = 0 (25)

2ξT (t)T [ηk(t− τ2(t))− ηk(t− τ2)

−
∫ t−τ2(t)

t−τ2

η̇k(s)ds] = 0 (26)

2ξT (t)S12[Aξ(t) + (β(t)− β0)Bξ(t)] = 0 (27)

where

ST
12 =

[
ST

1 0 0 0 0 ST
2

]

There exist Ri > 0, (i = 1, 2, 3), such that

−2ξT (t)N
∫ t

t−τ1(t)

η̇k(s)ds

≤ τ1(t)ξT (t)NR−1
1 NT ξ(t)

+
∫ t

t−τ1(t)

η̇T
k (v)R1η̇k(s)ds (28)

−2ξT (t)M
∫ t−τ1(t)

t−τ1

η̇k(s)ds

≤ (τ1 − τ1(t))ξT (t)MR−1
1 MT ξ(t)

+
∫ t−τ1(t)

t−τ1

η̇T
k (s)R1η̇k(s)ds (29)

−2ξT (t)V
∫ t−τ1

t−τ2(t)

η̇k(s)ds

≤ (τ2(t)− τ1)ξT (t)V R−1
2 V T ξ(t)

+
∫ t−τ1

t−τ2(t)

η̇T
k (s)R2η̇k(s)ds (30)

−2ξT (t)T
∫ t−τ2(t)

t−τ2

η̇k(s)ds

≤ (τ2 − τ2(t))ξT (t)TR−1
2 TT ξ(t)

+
∫ t−τ2(t)

t−τ2

η̇T
k (v)R2η̇k(s)ds (31)

2ξT (t)S12(β(t)− β0)Bξ(t)
≤ ξT (t)(S12R

−1
3 ST

12

+(β(t)− β0)2BT R3B)ξ(t) (32)

Adding (23) − (27) to the right of (22) and Substituting
(28) − (32) into (22) and taking expectation on the both
sides of (22), we can obtain

E{LV (ηkt)} ≤ ξT (t)[Σ11 + S12R
−1
3 ST

12

+β0(1− β0)BT R3B + τ1(t)NR−1
1 NT

+(τ1 − τ1(t))MR−1
1 MT

+(τ2(t)− τ1)V R−1
2 V T

+(τ2 − τ2(t))TR−1
2 TT ]ξ(t) (33)

By schur complement from (20) and Lemma 2, we can
conclude

Σ11 + S12R
−1
3 ST

12 + β0(1− β0)BT R3B

+τ1(t)NR−1
1 NT + (τ1 − τ1(t))MR−1

1 MT

+(τ2(t)− τ1)V R−1
2 V T + (τ2 − τ2(t))TR−1

2 TT < 0

It’s easy to see E{LV (ηkt} < 0, then by the Lyapunov
stability theory, we know that the system (4) are stochastic
asymptotically stable, according to lemma 1, the asymptotic
synchronization defined in (3) is achieved, the proof is
completed.

IV. NUMERICAL EXAMPLES

Example 1: Consider a 10-node network, in which each
node is a simple three-dimensional linear system describe in
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Refs [18] ⎧⎪⎨
⎪⎩

ẋi1(t) = −xi1(t)
ẋi2(t) = −2xi2(t)
ẋi3(t) = −3xi3(t)

(34)

which is asymptotically stable at the equilibrium point
s(t) = (0, 0, 0)T , and its Jacobin matrix is J(t) =
diag{−1,−2,−3}, for simplicity. We suppose that the inner-
coupling matrix is Γ = diag(1, 1, 1), and the coupling matrix
G is⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 1 0 0 1 1 1 0 0 0
1 −3 0 0 0 0 0 1 1 0
0 0 −1 0 0 0 0 1 0 0
0 0 0 −2 0 1 0 1 0 0
1 0 0 0 −2 0 0 0 1 0
1 0 0 1 0 −2 0 0 0 0
1 0 0 0 0 0 −3 0 1 1
0 1 1 1 0 0 0 −3 0 0
0 1 0 0 1 0 1 0 −4 1
0 0 0 0 0 0 1 0 1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

obviously, G is an irreducible symmetric matrix. Therefore,
if the delayed equations (4) are asymptotically stable, then
the synchronized state s(t) is asymptotically stable. some
work has been done to complex networks with constant
time delays[7][13], however, here we consider the complex
networks with time varying delays, which are more common
in practical. When the delay is random and its probability
distribution is known a prior, using Theorem 1, we can obtain
Table I and Table II, which list the maximum allowable
bounds for different c, β0, and τ1.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper, the synchronization problem has been inves-
tigated for complex dynamical networks with probabilistic
interval time-varying delays. Based on the information of
probability distribution of time delay, a new model of the
system, which has stochastic parameter matrices, has been
proposed, Basing on the new model, the sufficient condition
for delay-dependent asymptotical synchronization stability is
derived in the form of linear matrix inequalities. Illustrative
examples are presented, which show the efficiency of the
derived results.

B. Future Works

It should be pointed out that the method in the present
paper can also be extended to the case when the probability
of the delay taking values in series of intervals can be
observed, this work will be left for our future research.
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TABLE I
MAXIMUM ALLOWABLE τ2 FOR DIFFERENT β0 , (c = 0.1)

τ1 0.1 0.3 0.5
β0 = 0 3.2210 3.2494 3.3274

β0 = 0.1 3.5802 3.5798 3.6385
β0 = 0.7 10.6175 10.0946 9.7752
β0 = 0.9 31.6453 29.5739 27.9635

TABLE II
MAXIMUM ALLOWABLE τ2 FOR DIFFERENT β0 , (c = 0.5)

τ1 0.1 0.3 0.5
β0 = 0 0.5291 0.5306 0.5553

β0 = 0.1 0.6104 0.5678 0.5619
β0 = 0.7 1.7763 1.1506 0.6442
β0 = 0.9 5.1324 2.8006 0.8459
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